

USN

15MAT31

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Engineering Mathematics – III

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series for the function f(x) = |x| in $(-\pi, \pi)$ and hence deduce that

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 (08 Marks)

b. Obtain the constant term and the coefficients of the first harmonics in the Fourier of y as given below:

X	0	1	<i>2</i>	3	4	5
у	9	18	24	28	26	20

(08 Marks)

OR

2 a. Obtain the Fourier series of the function

$$f(x) = \begin{cases} x, & \text{for } 0 \le x \le \pi \\ 2\pi - x, & \text{for } \pi \le x \le 2\pi \end{cases}$$
 (06 Marks)

b. Obtain a half-range cosine series for the function,

$$f(x) = \begin{cases} Kx, & 0 \le x \le \frac{\ell}{2} \\ K(1-x), & \frac{\ell}{2} \le x \le \ell \end{cases}$$
 (05 Marks)

c. Expand:

$$f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$$
 as the Fourier series of sine terms. (05 Marks)

<u> Module-2</u>

3 a. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1, & \text{for } |x| \le a \\ 0, & \text{for } |x| > a \end{cases} \text{ and hence evaluate } \int_{0}^{\pi/2} \frac{\sin x}{x} dx$$
 (06 Marks)

b. Find the Fourier sine transform of $e^{-|x|}$ and hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0.$ (05 Marks)

c. Find the z-transform of (i) $(n + 1)^2$ (ii) $\sin(3n + 5)$

(05 Marks)

ΩR

4 a. Using z-transform, to solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$. (06 Marks)

b. Find the inverse z-transform of
$$\frac{2z^2 + 3z}{(z+2)(z-4)}$$
. (05 Marks)

c. Obtain the Fourier cosine transform of

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$
 (05 Marks)

Module-3

5 a. Calculate the correlation coefficient of the following data:

X	105	104	102	101	100	99	98	96	93	92
у	101	103	100	98	95	96	104	92	97	94

(06 Marks)

b. Fit a curve $y = a + bx + cx^2$ for the following data:

X	0	1	2	3	4
у	1.0	1.8	1.3	2.5	6.3

(05 Marks)

c. Find the root of the equation $xe^x = \cos x$ using Regula-Falsi method.

(05 Marks)

OR

6 a. Fit the curve $y = ae^{bx}$ for the following data:

X	2	4	6	8
у	25	38	56	84

(06 Marks)

b. Find by Newton's-Raphson method, the real root of the equation $3x = \cos x + 1$. (05 Marks)

c. Calculate the regression line y on x of the following data:

X	1	2	3	4	5	6	7	8	9	10
у	10	12	16	28	25	36	41	49	40	50

(05 Marks)

Module-4

7 a. Find the cubic polynomial which takes the following values:

X	, 0	1	2	3
f(x)	1	2	1	10

Hence evaluate f(4).

(06 Marks)

b. Using Newton's divided difference formula, evaluate f(8) and f(15), given

4	X	4	5	7	10	11	13
	f(x)	48	100	294	900	1210	2028

(05 Marks)

c. Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$ by using Simpson's $1/3^{rd}$ rule.

(05 Marks)

OR

8 a. Given the values

		_				
X	5	7	11	13	17	
f(x)	150	392	1452	2366	5202	

Evaluate f(9), using Lagrange's formula.

(06 Marks)

b. Estimate the values of f(42) from the following data:

X	20	25	30	35	40	45
У	354	332	291	260	231	204

(05 Marks)

c. The following table gives the velocity v of a particle at time 't'.

t (sec)	0	2	4	6	8	10	12
v (n/sec)	4	6	16	34	60	94	136

Find the distance moved by the particle in 12 seconds and also the acceleration at t = 2 seconds. (05 Marks)

Module-5

- 9 a. Verify Green's theorem for $\int_{c} [(xy + y^{2})dx + x^{2}dy]$ where c is the bounded by y = x and $y = x^{2}$. (06 Marks)
 - b. Applying Stoke's theorem to evaluate $\int_{c} (ydx + zdy + xdz)$ where c is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a. (05 Marks)
 - c. Find the curves on which the functional $\int_{0}^{1} [(y')^{2} + 12xy]dx$ with y(0) = 0 and y(1) = 1 can be extremal. (05 Marks)

OR

- 10 a. Derive the Euler's equations in calculus of variation. (06 Marks)
 - b. Find the plane curve of fixed perimeter and maximum area. (05 Marks)
 - c. Evaluate $\int_{s} [yzi + zxj + xyk] \cdot ds$, where 's' is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant. (05 Marks)

* * * * *